Analytic maps between Riemann surfaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic maps from degenerating Riemann surfaces

We study harmonic maps from degenerating Riemann surfaces with uniformly bounded energy and show the so-called generalized energy identity. We find conditions that are both necessary and sufficient for the compactness in W 1,2 and C modulo bubbles of sequences of such maps. 2000 Mathematics Subject Classification: 58E20

متن کامل

Mt845: Riemann Surfaces – from Analytic and Algebraic Viewpoints

Example 1.2. (a) Suppose X is a Riemann surface. Let Y ⊂ X be a (connected) open subset. Then Y is a Riemann surface, whose complex structure is given by taking all U ⊂ Y from charts of X. (b) Let P = C ∪ {∞}, homeomorphic to the real sphere. Take U1 = P\{∞} = C, U2 = P\{0} = C∗ ∪ {∞}. Define φ1(z) = z, φ2(z) = 1/z for z 6= ∞ and φ2(∞) = 0. Then φ2 ◦ φ−1 1 : C∗ → C∗ is given by z 7→ 1/z, which ...

متن کامل

Harmonic morphisms onto Riemann surfaces and generalized analytic functions

© Annales de l’institut Fourier, 1987, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...

متن کامل

Soft Maps Between Surfaces

The problem of mapping between two non-isometric surfaces admits ambiguities on both local and global scales. For instance, symmetries can make it possible for multiple maps to be equally acceptable, and stretching, slippage, and compression introduce difficulties deciding exactly where each point should go. Since most algorithms for point-to-point or even sparse mapping struggle to resolve the...

متن کامل

Complexification, Twistor Theory, and Harmonic Maps from Riemann Surfaces

Penrose's twistor theory and many other ideas of mathematical physics are based on the notion of complexification. This notion is explained and examples of its apphcation in physics and mathematics are described. In particular, the well-known analogy between Yang-Mills fields and harmonic maps of Riemann surfaces becomes rather stronger after complexification. This strengthening is the main poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1962

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1962-0136725-1